
A Recurrent Dynamic Model for Efficient Bayesian
Optimization*

P. Michael Furlong
Centre for Theoretical Neuroscience)

University of Waterloo
Waterloo, Canada

michael.furlong@uwaterloo.ca

Nicole Sandra-Yaffa Dumont
Centre for Theoretical Neuroscience

University of Waterloo
Waterloo, Canada

nicole.dumont@uwaterloo.ca

Jeff Orchard
Center for Theoretical Neuroscience

University of Waterloo
Waterloo, Canada

jorchard@uwaterloo.ca

Abstract—Bayesian optimization is an important black-box
optimization method used in active learning. An implementation
of the algorithm using vector embeddings from Vector Symbolic
Architectures was proposed as an efficient, neuromorphic ap-
proach to solving these implementation problems. However, a
clear path to neural implementation has not been explicated.
In this paper, we explore an implementation of this algorithm
expressed as recurrent dynamics that can be easily translated
to neural populations, and present an implementation within
the Lava programming framework for Intel’s neuromorphic
computers. We compare the performance of the algorithm using
different resolution representations of real-valued data, and
demonstrate that the ability to find optima is preserved. This
work provides a path forward to the implementation of Bayesian
optimization on low-power neuromorphic computers, permitting
the deployment of active learning techniques in low-power, edge
computing applications.

Index Terms—Bayesian optimization, vector symbolic algebras,
fractional power encoding, recurrent dynamics

I. INTRODUCTION

Active learning is important for agents that are continually
learning about the systems with which they interact. Bayesian
optimization (BO) is a widely used black-box optimization
procedure used for sample efficient active learning in the
presence of noisy observations. In BO, the next sample to
observe is selected by optimizing an information-theoretic
acquisition function. Optimization problems are well matched
to neuromorphic hardware [1], and, given the utility of BO,
translating Bayesian optimization to neuromorphic computing
warrants investigation.

Gaussian process regression (GPR)-based methods for BO
are well established, with popular choices of acquisition
function being based either on the Upper Confidence Bound
algorithm [2] or on Mutual Information [3]–[5]. In these
methods Gaussian processes provide the posterior distribu-
tion over observations necessary to compute the information
theoretic quantities that lie at the heart of their respective
acquisition functions. Unfortunately, these algorithms have
sample selection memory and time complexity that grows in
the square (t2) and the cube (t3), respectively, of the number of
samples collected, t. The unbounded complexity growth is not

This work was funded in part by an Intel Neuromorphic Research Com-
munity Grant

Solution
Neurons

MI Gradient

Sample Selection Process

Fig. 1: The overall network is implemented using two con-
nected Lava processes. Parameters of the Bayesian linear re-
gression (BLR) acquisition function are learned outside of the
process and are updated in response to observations collected
by the network. At any given time, the solution neurons are
representing the current estimate of the next sample to take,
which eventually converges to the true solution.

compatible with applications with bounded resources, as may
be found in mobile robotics, aerospace, or edge computing
applications.

Furlong et al. proposed a constant complexity BO algorithm
that operated in the space of representations defined by a
Vector Symbolic Algebra (VSA)1 [6]–[9]. The efficiency was
gained by exploiting the connection between VSA represen-
tation and reproducing kernel Hilbert spaces [10], [11], in
order to invert the kernel trick [12] and approximate the
distribution over observations. While this algorithm proposes
BO in a space of neurally-plausible representations, a neurally-
plausible implementation of the algorithm was not proposed

1More commonly known as Vector Symbolic Architectures



Fig. 2: VSAs projects data into a high-dimensional vector space. Reformulating the mutual information objective function in
the high-dimensional vector space turns the problem into a convex optimization.

at that time.
In this paper, we propose an implementation of Furlong

et al.’s algorithm as a recurrent dynamical system, providing
a path forward to neural implementation. Further, we use
the Hexagonal Spatial Semantic Pointer (Hex-SSP) encoding
to represent data, which further ties the implementation to
grid cells [13], [14]. We also provide an implementation of
the optimization algorithm written in Lava, a programming
framework for the Intel Loihi neuromorphic processors [15],
[16]. We test the performance of this implementation using
different numerical precision.

The contributions of this work include:

1) Modelling Bayesian optimization as recurrent dynamics;
2) Implement Bayesian optimization in the Hexagonal SSP

representation space;
3) The implementation of the algorithm using the Lava [15]

framework;
4) The comparison of algorithm performance as a function

of numerical precision; and
5) Comparison of an approximation of Bayesian optimiza-

tion that simplifies the learning rule and demands on
neuromorphic implementations.

In the rest of the document we provide a brief introduction
to the representations and algorithm used in this paper (Section
II), then we provide the derivation of the recurrent dynamic
implementation of the optimization algorithm and the process-
based implementation in the Lava framework (Section III), and
then present results on standard optimization target functions
(Section IV), and conclude in Section V.

II. BACKGROUND

Below (Section II-A), we provide a brief overview of
how the Holographic Reduced Representation (HRR) VSA
represents and encodes data, through the representation of
atomic components (atomic symbols and vectors) and the
operations that are used to construct representations of data
structures. Those interested in greater detail are referred to
the work of [9], [11], [17], [18]. We also briefly describe the
BO formulation presented in Furlong et al. [19], which is the
optimization algorithm we use in this document (Section II-B).

A. VSA Data Encoding

VSAs are a family of algebras that can be used to imple-
ment cognitive models that can be implemented by neural
networks [6]–[9], [18]. VSAs operate on high-dimensional
vectors using a limited set of algebraic operations, in this work
we use the HRRs algebra of [8]. We prefer this algebra because
it is dimensionality preserving.

In this document, we use representations of continuous
data designed to model the activity of grid cells in the
medial entorhinal cortex [14], representations we refer to as
Hexagonal Spatial Semantic Pointers (SSPs) [13], [14], or
Hex-SSPs. Data are encoded using Hex-SSPs by taking an
input vector, x ∈ Rm, and projecting it into a d-dimensional
vector space:

ϕ(x) = F−1
{
eiAx

}
,

where A ∈ Rd×m is an encoding matrix, which is constrained
to have conjugate symmetry, and F−1 is the inverse discrete
Fourier transform. The matrix A is designed such that the dot
product between encoded values approximates a kernel that is
a sum of sinc kernels aligned along an m-simplex (see [14]
for details). This differs from the approach of [19], which used
a randomly generated A matrix, but the optimization should
be agnostic to the encoding scheme, as will be seen below.

One can also use VSAs to represent discrete and categorical
objects, and can further compose these atomic representations
to create representations of various data structures. More detail
on how to construct such representations are available in refer-
ences [8], [9], [17], [20]. Performing BO over more complex
spaces is described in forthcoming work [21]. Because the dot
product in this space induces a positive definite kernel, we can
use it in the kernel trick for approximating Gaussian processes,
and hence in Bayesian optimization, which we describe below.

B. BO Formulation

The BO formulation we use follows Furlong et al.’s im-
plementation of Contal et al.’s mutual information Bayesian
optimization [5]. The objective is to find the sampling location,
x∗, that maximizes a function f(·). The function domain is



sampled to provide a set of candidate sampling locations, X .
The algorithm computes an acquisition function, given by

at(x) = µt(x) +
√
γt + σ2

t (x)−
√
γt, (1)

where µt(x) is the current estimate of f(x), σ2
t (x) is the

predicted variance of µt(x), and γt accumulates the predicted
variance of previously observed locations. The highest-scoring
candidate sample location is selected for follow-up observa-
tions, which are used to update the algorithm that predicts
µt(x) and σ2

t (x).
The mutual information algorithm of Contal et al. [22] used

Gaussian process regression to estimate a Gaussian distribution
over observations y = f(x), parameterized by a mean and
variance. In our algorithm, the mean and variance, µt(x) and
σ2
t (x) respectively, are provided by a BLR over the SSP

representation of the points in X .
Inverting the kernel trick, Furlong et al. approximates the

components of the acquisition function using BLR. The online
update rules for the BLR parameters are defined, per Bishop
[23, §3.3] as:

Σ−1
t = Σ−1

t−1 + βϕ(xt)
Tϕ(xt) (2)

mt = ΣtΣ
−1
t−1mt−1 +Σtβϕ(xt)yt. (3)

The predicted mean and variance were computed using

µt(x) = mT
t−1ϕ(x) (4)

σ2
t (x) =

1

β
+ ϕ(x)TΣt−1ϕ(x). (5)

Ultimately, the objective is to maximize the acquisition
function, at(x). Fortunately, when expressed in the vector
space of Hex-SSPs, this function is convex (see Fig. 2 for
an illustration), and can be readily optimized using gradient
methods. We describe this gradient method below.

III. METHOD

Encoding gradient-based optimization into recurrent neural
dynamics is a well-established practice. To translate this into
the Lava programming framework of the Loihi2 processor,
we break the optimization routine down into independent
processes, which mirror the model predictive control opti-
mization described in. Below we start by deriving recurrent
dynamics that must be implemented by the neural implemen-
tation (Section III-A). Next we sketch the processes used to
implement the optimization and that we have implemented in
Lava (Section III-B). Finally, we demonstrate the performance
of the Lava implementation and how performance changes as
the precision of the numerical representations are changed.

A. Gradient Derivation

The acquisition function we are trying to optimize is given
in (1). To compute the gradient, we take the gradient of a(x)
with respect to the vector ϕ(x),

∇ϕa(x) = m+
1√

ϕ(x)TΣϕ(x) + β−1 + γt
Σϕ(x) . (6)

Then, for a certain step size η, the dynamics that maximize
the objective function are given by:

ϕ(x)t′ = ϕ(x)t + η∇ϕa(x) . (7)

To implement these methods in neurons, we would use
a population of neurons to represent the current solution,
xt, and then a second population to transform the current
solution state into the gradient step for the next iteration of
the function. Over time the solution neurons converge to the
optimal solution, and the state can be decoded downstream.

B. Lava Implementation

The vectors that are passed between the two populations
(current solution state, current gradient) are the interface
between these populations. Hence, we can abstract away the
neural implementation as processes that are communicating
vectors recurrently. In Lava, we implement this method using
two processes:

1) The Solution neurons - these neurons hold an encod-
ing of the solution, ϕ(x)t. The process is functionally
defined in Algorithm 1.

2) The MI Gradient process - this population computes
the gradient as a function of the state of the solution
neurons. The process is functionally specified in Algo-
rithm 2.

The system defined by these two processes can be run for a
fixed number of steps, or until convergence. The architecture of
the overall network is given in Fig. 1. Note that the MI gradient
method relies on the parameters learned by the Bayesian
Linear Regression.

Algorithm 1 Solution Neurons Behaviour Specification

0: procedure SOLUTIONNEURONS(Input: ∇a(x)t, η, Out-
put: xt)

0: ∇a(x)t ← receive(input)
0: xt ← xt + η∇a(x)tdt
0: send(xt)
0: end procedure=0

The process receives input from the process that computes
the gradient and integrates that update into the internal state,
xt, with a direct connection and a recurrent connection, as
described in Algorithm 1. To implement the gradient dynamics
we define the process described in Algorithm 2. The full code
for this implementation is available at removed for review.

IV. RESULTS

We tested the algorithm on the optimization target functions
used in [19]. We compare against an implementation of Contal
et al.’s algorithm [5], where µt(x) and σ2

t (x) are provided by a
Gaussian Process regression using a Matérn kernel, operating
on the raw input vectors, x ∈ X . GP-Matern was implemented
using the GPy library [24] and uses 64-bit numerical precision.

Both algorithms are initialized with ten observations that
are used to optimize the kernel length scale hyperparameter.



0 50 100 150

Sample number

0.5

1.0

1.5

2.0

A
v
g
cu
m
u
la
ti
ve

re
gr
et

Himmelblau

0 50 100 150

Sample number

20

40

60

80

Branin-Hoo

0 50 100 150

Sample number

0.0

0.5

1.0

Goldstein-Price

precision 16

precision 32

precision 64

gp-matern

Average Cumulative Regret vs Sample Number (Magma, N=10)

Fig. 3: The Average cumulative regret for the Lava implementation of the neural dynamics version of the Spatial Semantic
Pointer Bayesian Optimization (SSP-BO) algorithm. In all cases, we see improvements in performance as sample number
increases, but performance tends to decrease with lower-precision floating point representations. Additionally, our approach
implemented with 32- or 64-bit precision outperforms the non-neural GP-Matern baseline algorithm, which uses 64-bit precision.
Test run for N = 10 trials, shaded regions represent a 95% confidence interval.

Algorithm 2 MI Gradient Process Specification

0: procedure SOLUTIONNEURONS(Input: xt Parameters:
mt,Σt, β−1, γt, Output: ∇a(x)t)

0: xt ← receive(input)
0: st ← xT

t Σtxt

0: ∇a(x)t ← −
(
mt +

1√
st+γt+β−1

Σtxt

)
0: send(∇a(x)t)
0: end procedure=0

For SSP-BO, candidate sample locations are transformed into
SSPs, ϕ(x). In this work, we use the same length scale
parameter, h, for all vector elements, although that is not
necessary. Initialization points were selected by randomly
shuffling the candidate locations and using the first 10 points.
For both algorithms, the hyperparameters were only optimized
on the initial 10 samples, and not modified afterwards.

The average regret performance is displayed in Fig. 3.
From these results we draw three observations. First, we were
successfully able to implement the optimization algorithm
using the recurrent dynamics. Second, the algorithm is able
to continually optimize the value of the selected actions
despite the precision. Thirdly, the lower the precision, the
slower the rate of reduction in regret for the optimization
algorithm. Notably, our approach implemented with 32- or 64-
bit precision outperforms the non-neural GP-Matérn baseline
algorithm, which uses 64-bit precision. Additionally, the 16-
bit precision implementation is only marginally worse than the
GP-Matérn baseline.

By inspection, the variability of the algorithm performance
does not appear to be substantially affected by the numer-
ical precision. We also observe that in the Himmeleblau
and Goldstein-Price the regret performance of the algorithm

increases with the decrease in precision. In the case of the
Branin-Hoo algorithm the 64- and 32-bit floating point repre-
sentations have identical performance.

V. DISCUSSION AND CONCLUSION

We have shown that the proposed Bayesian optimization
method successfully translates to implementation in recurrent
dynamics. This proof of concept of a recurrent dynamics
implementation of Bayesian optimiziation in the VSA space
provides a pathway to implementing the BO algorithm on
neuromorphic hardware. We were able to implement this
algorithm simply due to the convexification of the acquisition
function, which was enabled by optimizing in the VSA space.
We have also shown that while the optimization procedure is
sensitive to the precision of the implementation, the optimiza-
tion procedure is still able to continually improve results.

The dynamics described in this system are agnostic of
the encoding scheme, which suggests that this optimization
scheme may well extend to other data formats encoded using
VSA methods. We have released a Lava implementation of
the recurrent dynamics which we will integrate into the Lava
optimization package.

However, we observe that the VSA encoding that we use in
this implementation relies on dense representations. In order
to make better use of the resources available on the Loihi 2,
this algorithm will best benefit from integration with a sparse
fractional binding technique, akin to the method proposed
by Frady et al. [25]. We are also investigating methods for
approximating the Bayesian linear regression, in order to
reduce the complexity of the learning rule, and hence the
circuitry required to implement the algorithm.

REFERENCES

[1] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra,
P. Joshi, P. Plank, and S. R. Risbud, “Advancing neuromorphic com-



puting with loihi: A survey of results and outlook,” Proceedings of the
IEEE, vol. 109, no. 5, pp. 911–934, 2021.

[2] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: no regret and experimental design,”
in Proceedings of the 27th International Conference on International
Conference on Machine Learning, pp. 1015–1022, 2010.

[3] D. Y. Little and F. T. Sommer, “Learning in embodied action-perception
loops through exploration,” arXiv preprint arXiv:1112.1125, 2011.

[4] D. Y.-J. Little and F. T. Sommer, “Learning and exploration in action-
perception loops,” Frontiers in neural circuits, vol. 7, p. 37, 2013.

[5] E. Contal, V. Perchet, and N. Vayatis, “Gaussian process optimization
with mutual information,” in International Conference on Machine
Learning, pp. 253–261, PMLR, 2014.

[6] P. Kanerva, Sparse distributed memory. MIT press, 1988.
[7] P. Smolensky, G. Legendre, and Y. Miyata, “Integrating connectionist

and symbolic computation for the theory of language,” Tech. Rep. CU-
CS-628-92, University of Colorado, Boulder, 1992.

[8] T. A. Plate, “Holographic reduced representations,” IEEE Transactions
on Neural networks, vol. 6, no. 3, pp. 623–641, 1995.

[9] C. Eliasmith, How to build a brain: A neural architecture for biological
cognition. Oxford University Press, 2013.

[10] A. R. Voelker, “A short letter on the dot product between rotated Fourier
transforms,” arXiv preprint arXiv:2007.13462, 2020.

[11] E. P. Frady, D. Kleyko, C. J. Kymn, B. A. Olshausen, and F. T. Sommer,
“Computing on functions using randomized vector representations,”
arXiv preprint arXiv:2109.03429, 2021.

[12] A. Rahimi, B. Recht, et al., “Random features for large-scale kernel
machines.,” NIPS, vol. 3, no. 4, p. 5, 2007.

[13] B. Komer, T. C. Stewart, A. Voelker, and C. Eliasmith, “A neural
representation of continuous space using fractional binding.,” in CogSci,
pp. 2038–2043, 2019.

[14] N. S.-Y. Dumont and C. Eliasmith, “Accurate representation for spatial
cognition using grid cells,” in 42nd Annual Meeting of the Cognitive
Science Society. Toronto, ON: Cognitive Science Society, pp. 2367–2373,
2020.

[15] Intel’s Neuromorphic Computing LabINCL, Lava Software Framework.
Intel, 2021.

[16] G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha, F. T.
Sommer, and M. Davies, “Efficient neuromorphic signal processing with
loihi 2,” in 2021 IEEE Workshop on Signal Processing Systems (SiPS),
pp. 254–259, IEEE, 2021.

[17] A. R. Voelker, P. Blouw, X. Choo, N. S.-Y. Dumont, T. C. Stewart, and
C. Eliasmith, “Simulating and predicting dynamical systems with spatial
semantic pointers,” Neural Computation, vol. 33, no. 8, pp. 2033–2067,
2021.

[18] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive computation, vol. 1, no. 2, pp. 139–159, 2009.

[19] P. M. Furlong, T. C. Stewart, and C. Eliasmith, “Fractional binding
in vector symbolic representations for efficient mutual information
exploration,” in ICRA Workshop: Towards Curious Robots: Modern
Approaches for Intrinsically-Motivated Intelligent Behavior. 1ś5, 2022.

[20] D. Kleyko, M. Davies, E. P. Frady, P. Kanerva, S. J. Kent, B. A.
Olshausen, E. Osipov, J. M. Rabaey, D. A. Rachkovskij, A. Rahimi,
et al., “Vector symbolic architectures as a computing framework for
nanoscale hardware,” arXiv preprint arXiv:2106.05268, 2021.

[21] P. M. Furlong, N. S.-Y. Dumont, R. Antanova, J. Orchard, and C. Elia-
smith, “Efficient exploration using neuromorphic Bayesian optimization
on trajectory spaces,” in submission, 2023.

[22] J. Conklin and C. Eliasmith, “A controlled attractor network model
of path integration in the rat,” Journal of computational neuroscience,
vol. 18, no. 2, pp. 183–203, 2005.

[23] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.
[24] GPy, “GPy: A Gaussian process framework in Python.” http://github.

com/SheffieldML/GPy, since 2012.
[25] E. P. Frady, D. Kleyko, and F. T. Sommer, “Variable binding for sparse

distributed representations: Theory and applications,” IEEE Transactions
on Neural Networks and Learning Systems, 2021.


