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Abstract

We present a unified model of how groups of neurons can
represent and learn probability distributions using a biologi-
cally plausible online learning rule. We first present this in the
context of insect olfaction, where we map our model onto a
well-known biological circuit with a single output neuron that
represents whether the current stimulus is novel or not. We
show that the model approximates a Bayesian inference pro-
cess, providing an explanation as to why the current flowing
into the output neuron is proportional to the expected proba-
bility of that stimulus. Finally, we extend this model to show
that the same circuit can detect deviations in temporal patterns,
like the expectation violations that elicit the EEG mismatch
negativity signal.
Keywords: novelty detection; insect olfaction; mismatch neg-
ativity; neural representation; hyperdimensional computing;
fractional binding; spatial semantic pointers; Bayesian infer-
ence

Introduction

It is critically important for any cognitive agent to recognize
their sensory stimuli as novel or unexpected. Different strate-
gies may be applicable, depending on whether one is in a
familiar situation (in which case one can safely rely on pre-
viously learned knowledge), or in a novel situation (in which
case a more careful and exploratory strategy may be appropri-
ate). In mammals, an example of this is seen in the Mismatch
Negativity signal, a strong EEG signal that appears approxi-
mately 200ms after a surprising stimulus (Pazo-Alvarez et al.,
2003). This seems to be an automatic process, occurring re-
gardless of whether the participant is paying attention to the
stimulus or not. This automaticity and the speed of the re-
sponse suggests that this novelty detection is a simple and
basic process that may be understood without involving the
entire brain.

Furthermore, a specific neural circuit for novelty detec-
tion has also been identified in the insect brain. The MBON
(Mushroom Body Output Neuron) a’3 neuron is consistently
active in the presence of novel odours, and is silent for odours
that have been previously encountered. The inputs to this neu-
ron come from Kenyon Cells, which form a very sparse repre-
sentation of the current odour, so each odour corresponds to a
different (sparse) pattern of activity in these neurons. In (Das-
gupta et al., 2018), this system is compared to the computer-
science idea of a Bloom Filter, a type of hashtable where in-
put data is converted into a sparse representation, and then

individual elements of that representation (i.e. the activity of
the Kenyon Cells) are used to quickly determine whether the
current input is likely to be novel or not. The core idea is to
do this without requiring a complete database of every odour
that has been previously observed; instead, use the overlap in
the sparse representation as a fast estimate as for the input’s
novelty.

In this paper, we present a simple model of this novelty
detection system that is compatible with the above idea, but
interprets the computation being performed by the neurons
in a slightly different way. In particular, we suggest that the
neurons (and the connection weights between them) are in
fact representing a probability distribution, and “novelty” is
detected if the current input is highly unlikely according to
that distribution. We show that a very simple learning rule,
combined with a particular method for encoding information
in neurons, results in a network that accurately estimates the
observed probability distribution of different inputs, and that
a single neuron (such as the MBON a03 neuron) can use this
distribution to signal novelty.

Given this insect-based model, we then expand the sys-
tem to encode information over time, and show that the very
same model is capable of detecting the sort of temporal nov-
elty that is the hallmark of the Mismatch Negativity signal
in mammals. This expanded system makes use of Legendre
Memory Units (LMUs), a recurrent neural structure that has
been mapped to Time Cells (Voelker et al., 2019), tempo-
ral patterns in the cerebellum (Stöckel et al., 2021), and has
been shown to improve performance on Machine Learning
tasks over LSTMs (Voelker et al., 2019) and Transformers
(Chilkuri et al., 2021).

Vector Representation

Given the wide range of possible inputs for a novelty detec-
tion system, we define our inputs simply as vectors. These
can be of arbitrary dimensionality, and we do not constrain
their magnitude. In this way we can deal with inputs such
as odours (which in insects can be thought of as vectors in
a 50-dimensional space based on 50 different odour-sensing
neurons), or images, or numerical values in general. Interest-
ingly, the resulting model we define here will not need to be
changed in any way to handle different types of inputs, other
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than using our general-purpose input mapping.
When inputting a numerical vector into a neural network,

it is generally useful to transform it in some way. Typically,
this is some sort of normalization, ensuring that the input
has a mean of zero and a standard deviation of one, for ex-
ample. However, normalizing requires knowing the overall
range of possible input values. As an alternative, we adapt a
method used for encoding arbitrary-length lists into a fixed-
length vector.

In particular, Plate (1995) suggests using randomly chosen
high-dimensional unit vectors for representing structured in-
formation. The list [A,B,C] can be represented as the vector
A~X +B~X ~X +C~X ~X ~X , where ~ is circular con-
volution, A, B, C, and X are randomly chosen unit vectors
(and X is also unitary, ensuring that its magnitude stays 1
after repeated circular convolution). Since circular convolu-
tion is element-wise multiplication in the Fourier domain, the
repeated convolution X ~X ~X can be written as X

3, lead-
ing naturally to a generalization where the exponent is a real
number instead of an integer.

In other words, we can represent the position x on the x-
axis as X

x, where X is a randomly chosen unitary vector,
and where the exponent means “take the Fourier transform,
then raise each element to the power x, then take the inverse
Fourier transform”. For a two-dimensional input < x,y > we
can compute X

x ~Y
y, and so on for higher dimensions. Im-

portantly, the resulting vector is always a D-dimensional unit
vector (where D is the dimensionality of the base vectors X ,
Y , etc., which we set to be 1024 here). This is true regardless
of the number of actual inputs, meaning that we do not need
to change anything about the internals of our novelty detec-
tion model to deal with different inputs. Furthermore, since
the input is always a unit vector, we do not need to further
normalize the inputs.

While this approach to representation was mentioned in
(Plate, 1995), it is further analyzed in (Lu et al., 2019). In
particular, the Fourier transform of a unitary vector leads to a
vector with complex components [eif1 ,eif2 ,eif3 , ...]T, so rais-
ing this to a power x gives [eif1x,eif2x,eif3x, ...]T. This pro-
duces a series of oscillations, and as long as the fi values are
relatively prime, the exact pattern of oscillation will never re-
peat, no matter how much one varies x. Of course, for some
x values the resulting vectors will be very close to each other,
leading to the possibility of confusion between some points,
but in a high-dimensional space (D), this will be uncommon.

This idea of vectors being close to each other also provides
us with an important parameter for the model. In particular,
a small change in x will produce a small change in the vector
X

x. If we quantify this with the dot product, it can be shown
that, in the limit as D ! •, the similarity between X

a and
X

a+x approaches the normalized sinc function, sin(px)/(px).
That is, for x = 1, the two vectors will be orthogonal (no sim-
ilarity), but for smaller values of x the vectors will be closer
and closer to each other. This gives the representation a par-
ticular scale. Depending on our inputs, we may want to con-

input
(any dimensionality)

SSP representation
(D=1024 dimensions)

fixed random 
unit vector weights

50000 LIF neurons
(Kenyon Cells)

1 LIF neuron
(    )

Figure 1: Our novelty detection model. Arbitrary input is converted
into an SSP and passed to LIF neurons via randomly chosen fixed
connection weights. Output weights are increased whenever a neu-
ron is active, and decayed over time. In the insect, the neurons cor-
respond to Kenyon Cells and the output is the MBON a03 neuron.

trol this scale, and we do this by introducing a length scale
parameter l, and encode information as X

x/l ~Y
y/l. In this

way, values that are less than l apart will yield vectors with
high similarity. For our novelty detection system, this gives
us a reference for how different an input needs to be from
other inputs to be considered novel.

We call this style of representation a Spatial Semantic

Pointer, or SSP, since it gives a compressed representation
of an infinitely large space, but maintains semantic informa-
tion in that it yields high similarity for nearby x values. This
approach to continuous representation is first found in (Plate,
1992), and more recently in (Frady et al., 2018), where it is
known as Fractional Power Encoding, or Fractional Binding,
since the ~ operator is thought of as a binding operator in
Vector Symbolic Architectures.

Computational Model

Our computational model is shown in Figure 1. The first
step is to convert the input into an SSP vector, using the
above approach. We use D = 1024 here. Next, we define
50,000 neurons, each with a separate randomly-chosen 1024-
dimensional vector for its input connection weights. That is,
each neuron receives as input the dot product between the
actual input and a randomly chosen “preferred stimulus” for
that neuron. This is a generalization of the standard finding
of preferred-direction-vectors in sensory and motor cortices
(Georgopoulos et al., 1982; Schwartz et al., 1988). Each neu-
ron also has a negative bias input that controls how similar the
input needs to be to its ideal stimulus in order for the neuron
to be active. This controls the sparsity of the neural represen-
tation. While any rectified neuron model can be used for this,
here we use spiking Leaky Integrate-and-Fire (LIF) neurons
with a bias of 0.9.

Given this input, the 50,000 neurons will form a sparse rep-
resentation of that input, corresponding to Kenyon Cells ob-
served the insect. In order to learn what stimuli are common
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Figure 2: Queried probability after exposure to four different distri-
butions of data. Blue line is the total current flowing into the output
neuron, linearly scaled to unit area. Black dashed line is the ideal
distribution. Four different distributions are shown. Note that even
though the x-axis is very different for each distribution, the model
itself is not changed in any way.

given this representation, we add a simple learning rule to the
output connection weights of the model. These weights are
initialized to zero, and each is increased proportional to the
normalized activity of its corresponding, pre-synaptic neuron.
Finally, we also decay the weights toward 0 over time, result-
ing in a weight learning rule of dwi

dt
= ai

Â j a j
� wi

t , where ai is

the activity of the i
th neuron, wi is the connection weight, and

t is a time constant for the decay.
The overall output from this system should be large for

familiar inputs and small for unfamiliar inputs. Surpris-
ingly, as shown in Figure 2, the output current is propor-

tional to the probability of the input! That is, rather than just
detecting novel vs familiar inputs, the system learns to di-
rectly represent the probability distribution of the input. Here
we present inputs sampled from four different distributions
(black dashed lines), and then measure the output current over
a range of values from across the input domain. Importantly,
this method automatically calibrates itself for whatever range
of input values it receives. For example, the triangular distri-
bution consists of values between 32 and 34, while the square
and bimodal distributions cover values in the smaller ranges
of -2 to 5). This is because the neurons have preferred in-
puts that cover the entire 1024-dimensional space, which it-
self covers the entire infinite range of possible inputs to the
model, thanks to the SSP representation.

However, the wide distribution (Figure 2, bottom-right) be-
tween 0 and 50 shows higher variance in the probability rep-
resentation. This is due to the length-scale parameter l. The
effects of this parameter are explored in Figure 3, showing
that high variance can result from a value that is too small,
but a value that is too large can lead to reduced accuracy.
Thus, while this approach is robust to values anywhere on
the x-axis, it is sensitive to the overall scale of values being
represented.

We can also represent multidimensional probability repre-
sentations just by encoding samples as X

x ~Y
y. Again, noth-

ing is changed about the neural aspect of the model; all that is

Figure 3: Queried probability given exposure to a particular distri-
bution of data. Nine different versions of the model are shown, each
with a different length scale (l). When l is too small (< 0.05) or
too large (> 1), the representation is less accurate, but is fairly ro-
bust in-between.

Figure 4: Queried probability given exposure to a two-dimensional
data sampled evenly from a unit circle. Four different versions of the
model are shown, each with a different length scale (l). With larger
l the model generalizes across a larger region, so points slightly off
the unit circle are not considered novel.

changed is the mapping into the 1024-dimensional SSP space.
Figure 4 shows the resulting probability distribution (the blue
curve in Figures 2 and 3) for two-dimensional input data that
is sampled evenly from the unit circle. Notice that the length
scale l controls the resolution of the representation, control-
ling how far off the unit circle an input needs to be before it
is considered to be different enough from observed data to be
novel.

For a more detailed analysis of the accuracy of this model,
Figure 5 demonstrates the overall linearity of the representa-
tion, and Figure 6 shows the accuracy as the number of neu-
rons and length scale l are varied.

Why This Works

To understand why this works, we have to consider the em-
bedding of the SSP representation. The dot product be-
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Figure 5: Characterization of relationship between sample probabil-
ity and output current. Left: Scatterplot depicting individual samples
of output current against observation probabilities given the distribu-
tion, with data merged across 10 runs of the model. Apparent is a
linear relationship (regression line shown in black) and uniform vari-
ance in the representation error as a function of probability. Results
shown are for N = 1000 neurons, length scale l = 0.2. Right: His-
togram of residuals between true and estimated distribution pooled
across 10 runs of the model. The mean of errors is not different from
zero (P > 0.999, two-sided one-sample t-test).
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Figure 6: Representation error as a function of model parameters.
Left: Representation error falls with the number of neurons in the
model. Each gray dot represents one independent run of the model,
and the black markers indicate the mean error across runs for that
condition. Right: l has a modest effect on representation error.
Representation error is higher for both small and large values of l.
Intermediate values of l result in more variable performance but
generally lower error, indicated by a larger vertical spread of perfor-
mance.

tween SSP representations, X
x and X

x
0 , approximates a quasi-

kernel function, in this case the normalized sinc function,
X

x ·Xx
0 ⇡ sinc(kx�x

0k) = sin(pkx�x
0k)/(pkx�x

0k). Since
the sinc function is an admissible kernel for kernel density es-
timation (Tsybakov, 2009, §1.3), we can view the dot product
between an SSP encoded-vector and other vectors as approx-
imating a probability. The argument is as follows:

Consider a randomly chosen unit vector, wi, of synaptic
weights feeding into the i

th neuron of a network. The weights
wi will have some similarity with X

x, although for randomly
chosen wi, it is likely to be small. Consequently, we can con-
sider any synaptic weight matrix as being the sum of a vector
that is orthogonal to X

x, and one that is a sum of a (possi-
bly empty) set of points encoded using the SSPs. That is,
wi =

1
ni

Âni

k=1 X
xk +worthogonal.

We can then consider the input current of any given neu-
ron as being an approximation of the probability of the input

point, conditioned on a binary variable:

wi ·Xx =
1
ni

ni

Â
k=1

X
x ·Xxk +worthogonal ·Xx

⇡ 1
ni

ni

Â
k=1

sinc(kx� xkk)

⇡ P(X = x |Vi)

where the distribution conditioned on variable Vi is defined
by the sinc kernel and the points {x1, . . . ,xni

}. If we assume a
rectified linear neuron, ai = ReLU(wi ·Xx � bi), with a bias,
bi chosen according to the method identified by Glad et al.
(2003), then the activity of a neuron is exactly a probability.
When we normalize the population’s activities, âi = ai/Â j a j,
we see that this population is conducting Bayesian inference
on the variables, assuming a uniform prior over P(Vi), as
shown below.

P(Vi | X = x) =
P(X = x |Vi)P(Vi)

P(X = x)

=
P(X = x |Vi)P(Vi)

Â j P(X = x |Vj)P(Vj)

If we let P(Vi) be a non-informative prior, then we can remove
it from the equation, yielding

P(Vi | X = x) =
P(X = x |Vi)

Â j P(X = x |Vj)
⇡ ai

Â j a j

= âi

which is the normalized neuron activity.
While the above analysis assumes a ReLU neuron, we note

that LIF neurons, when averaged over time, produce an out-
put that is fairly similar to a ReLU, other than the saturation
behaviour. This saturation reduces the neuron output at high
similarity values, but since it is still monotonically increasing
(and non-negative), the LIF neuron’s overall firing rate will
still preserve the properties of the kernel function that make
them suitable for density estimation.

Once normalized, we know that their firing rates will al-
ways be scaled between 0 and 1. Consequently, the firing
rates of the neurons in the population can be used as the bases
in a reproducing kernel Hilbert space (for a good short intro-
duction see Ghojogh et al., 2021). Thus, they can approxi-
mate the probability density function over the points, encoded
in the activity of those neurons whose input weights are not
orthogonal to the manifold X

x,8x 2R. Our learning rule then
simply learns the appropriate weights, ai for the expression

P(X = x) =
n

Â
i

aik
0(x,xi) (1)

where k
0(x,xi) ⇡ LIF(sinc(kx� xik)� bi), and xi is a solu-

tion to argminx k1�wi ·X
xk2

2. Appealing to the representer
theorem (Schölkopf et al., 2001), then there exists an optimal
approximation of the probability distribution being learned,
constrained by the kernel function induced by the SSP en-
coding, neural activation function, and the implicit collection
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of points in the domain sampled by the synaptic weights. De-
pending on how the synaptic weights are chosen, better or
worse approximations can be found.

Mismatch Negativity

The theoretical argument and simulations above establish that
this system is able to represent multi-dimensional probabil-
ity distributions, and then detect when a stimulus is a low-
probability event. However, this is all based on the instan-
taneous input to the model. What if we also want to detect
novel temporal patterns? This would be needed to, for exam-
ple, respond to a stimulus being presented for an unexpected
length of time, or at a different frequency. The well-known
Mismatch Negativity signal is observed for exactly these sorts
of novel stimuli. However, the model as presented so far, is
only producing output based on the current input, and so can-
not be sensitive to such temporal differences.

To address this problem, we need a way to take an in-
put value that changes over time and convert it into a multi-
dimensional value that represents the recent history of that
signal. Fortunately, a method for doing this already exists:
Voelker et al. (2019) presented a linear differential equation
( dm

dt
= Am+Bx) that converts an input signal x into a vector

m which encodes the recent history of x as a set of coeffi-
cients of Legendre polynomials. This LMU (Legendre Mem-
ory Unit) and the associated LDN (Legendre Delay Network)
can be implemented in spiking neurons, resulting in neural
activity corresponding to Time Cells (Voelker et al., 2019),
and has also been shown to out-perform LSTMs, GRUs, and
Transformers on standard machine learning benchmarks that
require temporal information (Chilkuri et al., 2021; Voelker
et al., 2019).

With this in mind, we can construct a version of our model
that responds to temporal signals by passing input data into
an LDN to create the Legendre representation of the input,
and then feeding that representation into the same novelty de-
tection system defined above. As before, we do not need to
change anything about the model to handle the increased di-
mensionality of the input.

The results for an input pattern that starts as a 1Hz sig-
nal, then switches to a 2Hz signal, and then back again are
shown in Figure 7. We use a two-dimensional Legendre rep-
resentation to encode the previous 2 seconds of the input (sec-
ond graph). We also set the weight decay on the connection
weights to t= 5 seconds. If we now feed the temporal pattern
into the novelty detection system, the probability estimate
(third graph) shows an increasing estimate of probability as
the 1Hz signal becomes more familiar, and then a sudden drop
in the probability estimate when it switches to a 2Hz signal,
and then another drop when it returns to 1Hz. If we connect
this probability estimate output as an inhibitory signal to a
single spiking Leaky Integrate-and-Fire neuron (correspond-
ing to the MBON a03 neuron), then we can see this neuron
firing when the temporal pattern changes (fourth graph). Fig-
ure 8 shows the same result, but for a different input pattern

Figure 7: Detection of temporal novelty with the same circuit. The
stimulus (first graph) is a regular pattern which changes frequency.
The previous 2 seconds of the temporal input pattern is encoded us-
ing Legendre coefficients (second graph), and then fed into the same
novelty detection model as before. When the output probability is
low (third graph), novelty is detected (fourth graph).

with occasional outlier values.

Conclusions

We have demonstrated a simple single-hidden-layer neural
network that learns to represent the probability distribution of
its recent inputs. The output from this network can be used to
detect novel inputs (the output is proportional to the learned
probability, so it will be small if the learned probability for
that input is low). Furthermore, the model works for differ-
ent input dimensionalities and ranges, as inputs are converted
into points on a D-dimensional sphere no matter what dimen-
sionality those inputs are originally. The main parameter af-
fecting performance is the chosen length scale l, which does
need to be tuned (Figure 6). Increasing the number of neurons
improves performance, and the only other parameters are D
(the dimensionality of the SSP space) and the neuron bias
parameter, which controls the sparsity of the representation.
Characterizing the effects of these parameters is ongoing.

Furthermore, we have extended this model to detecting
temporal novelty as well, by exploiting a separate neural sys-
tem (the LMU) to convert an input signal into a vector that
represents the recent history of that signal. This gives a po-
tential mechanism for detecting novelty that could trigger the
observed Mismatch Negativity signal. This is somewhat sur-
prising, in that our original model was inspired by the insect
mushroom body system, while Mismatch Negativity is ob-
served in mammals. Our ongoing work is to further investi-
gate parallels between these two systems. However, it should
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Figure 8: Detection of temporal novelty with the same circuit. The
stimulus (first graph) is a regular pattern with occasional rare inputs
(e.g. auditory tones of one frequency with occasional tones of a
different frequency). The previous 2 seconds of the temporal input
pattern is encoded using Legendre coefficients (second graph), and
then fed into the same novelty dection model as before. When the
output probability is low (third graph), novelty is detected (fourth
graph).

be noted that the current model cannot directly explain the
Mismatch Negativity signal, since nothing in the current sys-
tem would generate a large and coherent EEG signal. That
said, we do believe our model could act as a trigger telling
the brain that a novel stimulus has occurred, which then leads
to some other brain mechanism coming online which does
generate the large change in electric field that is detected as
Mismatch Negativity.
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